کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2898809 1173101 2011 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Pathology of explanted polytetrafluoroethylene vascular grafts
موضوعات مرتبط
علوم پزشکی و سلامت پزشکی و دندانپزشکی کاردیولوژی و پزشکی قلب و عروق
پیش نمایش صفحه اول مقاله
Pathology of explanted polytetrafluoroethylene vascular grafts
چکیده انگلیسی

IntroductionGraft occlusion is a well-documented etiology for arteriovenous fistulae failure. However, there is little morphologic information elucidating why synthetic vascular grafts fail. The purpose of this study was to examine the tissue responses occurring within and adjacent to explanted polytetrafluoroethylene grafts that were utilized during cardiovascular procedures and subsequently removed.MethodsForty explanted polytetrafluoroethylene grafts (including 32 failed vascular grafts) originating from 18 females and 22 males who ranged in age from 6 to 82 years (mean age, 36 years) were evaluated. Duration of engraftment varied from 1 to 255 months (mean engraftment period, 64 months).ResultsIn addition to neointimal hyperplasia, foreign body reaction, and thrombosis, an unexpected finding was calcification involving the graft material, as well as luminal thrombus and adjacent soft tissues. Twenty-seven of forty cases (68%) showed evidence of calcification, either within or adjacent to polytetrafluoroethylene grafts. Histologic examination revealed variable degrees and patterns of calcification within and adjacent to explanted polytetrafluoroethylene membranes and conduits (arterial, arteriovenous, or cardiac grafts). A significantly longer duration of engraftment (P=.015) was identified in calcified versus noncalcified polytetrafluoroethylene materials. Patient age, serum calcium, creatinine level, and blood urea nitrogen level showed no statistically significant differences between patients with calcified grafts and patients without calcified grafts.ConclusionsInterstitial calcification is frequently found within explanted polytetrafluoroethylene grafts and is associated with graft disruption. These findings suggest that calcification of polytetrafluoroethylene biomaterials may play a role in eventual graft failure. A better understanding of the process of polytetrafluoroethylene graft calcification may lead to novel therapies that aid in the prevention of polytetrafluoroethylene vascular graft failure.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Cardiovascular Pathology - Volume 20, Issue 4, July–August 2011, Pages 213–221
نویسندگان
, , , ,