کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2953773 1577506 2006 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Identification of a Cytochrome P450 2C9-Derived Endothelium-Derived Hyperpolarizing Factor in Essential Hypertensive Patients
موضوعات مرتبط
علوم پزشکی و سلامت پزشکی و دندانپزشکی کاردیولوژی و پزشکی قلب و عروق
پیش نمایش صفحه اول مقاله
Identification of a Cytochrome P450 2C9-Derived Endothelium-Derived Hyperpolarizing Factor in Essential Hypertensive Patients
چکیده انگلیسی

ObjectivesWe assessed the role of cytochrome P450 2C9 (CYP 2C9)-derived endothelium-derived hyperpolarizing factor (EDHF) in the forearm microcirculation of essential hypertensive patients (EH) by utilizing sulfaphenazole (SUL), a selective CYP 2C9 inhibitor.BackgroundIn EH patients, EDHF acts as a compensatory pathway when nitric oxide (NO) availability is reduced. Cytochrome P450 2C9 is a possible source of EDHF.MethodsIn 36 healthy subjects (normotensive [NT]) and 32 hypertensive patients (HT), we studied forearm blood flow (strain-gauge plethysmography) changes induced by intraarterial acetylcholine (ACH) and bradykinin (BDK), repeated during NG-monomethyl-L-arginine (L-NMMA) (100 μg/100 ml/min) or SUL (0.03 mg/100 ml/min). In HT, the effect of SUL on ACH and BDK was repeated during vitamin C (8 mg/100 ml/min). Sodium nitroprusside (SNP) was utilized as control.ResultsIn NT, vasodilation to ACH and BDK was blunted by L-NMMA and not changed by SUL. In contrast, in HT responses to ACH and BDK, reduced compared with NT, were resistant to L-NMMA. In these patients, SUL blunted vasodilation to ACH and to a greater extent the response to BDK. When retested with vitamin C, SUL was no longer effective on both endothelial agonists. In 2 final groups of normotensive control subjects, vasodilation to ACH or BDK residual to cyclooxygenase and L-NMMA blockade was further inhibited by simultaneous SUL infusion. Response to SNP, similar between NT and HT, was unaffected by SUL.ConclusionsCytochrome P450 epoxygenase-derived EDHF acts as a partial compensatory mechanism to sustain endothelium-dependent vasodilation in HT, particularly the BDK-mediated response, when NO activity is impaired because of oxidative stress.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the American College of Cardiology - Volume 48, Issue 3, 1 August 2006, Pages 508–515
نویسندگان
, , , , , , , , ,