کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2967958 1178861 2012 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multidimensional ECG-based analysis of cardiac autonomic regulation predicts early AF recurrence after electrical cardioversion
موضوعات مرتبط
علوم پزشکی و سلامت پزشکی و دندانپزشکی کاردیولوژی و پزشکی قلب و عروق
پیش نمایش صفحه اول مقاله
Multidimensional ECG-based analysis of cardiac autonomic regulation predicts early AF recurrence after electrical cardioversion
چکیده انگلیسی

BackgroundHeart rate turbulence, deceleration capacity (DC), and symbolic dynamics (SD) are promising novel domains of autonomic indices representing the multidimensional qualities of autonomic heart rate dynamics.PurposeThe aim of this study was to test the impact of these novel indices in predicting early AF recurrence within the first month after electrical cardioversion (CV).MethodsIn 45 patients with AF, standard Holter recordings were commenced immediately after CV. Holter-based indices were retrospectively analyzed using computerized algorithms. The best indices were applied in a multivariate model to select the optimal combination set that correctly classified patients who developed early AF recurrence.ResultsEarly AF recurrence occurred in 25 vs 20 patients with stable sinus rhythm. The set with the highest predictive power consisted of DC, turbulence onset, VLF/P, and PTH19 as a parameter of SD. The receiver operating curve analysis applied to this optimum set produced an area under the curve of 0.86, thus correctly classifying patients with 95.0% specificity and 76.0% sensitivity.ConclusionThe analysis of novel multidimensional Holter-based autonomic indices after CV appears of clinical value because the procedure identifies patients with high risk of early AF recurrence. Furthermore, it indicates a substantial alteration of autonomic regulation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Electrocardiology - Volume 45, Issue 2, March–April 2012, Pages 116–122
نویسندگان
, , , , , , ,