کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
3029274 | 1183060 | 2009 | 5 صفحه PDF | دانلود رایگان |

IntroductionUpon stimulation, endothelial cells release von Willebrand factor (VWF) in the unusually large (UL) and hyperactive forms that are rapidly cleaved by ADAMTS-13. Mutations in the ADAMTS13 gene result in ULVWF-mediated thrombosis found in patients with familial thrombotic thrombocytopenia purpura (TTP). ADAMTS-13 fits in the consensus of the ADAMTS family metalloproteases, but also contains two unique C- terminal CUB domains. Studying mutations in CUB domains could provide insights into the functional role of these domains.MethodsThree naturally occurring mutations (C1213Y, W1245del and K1256FS) in the CUB-1 domain found in patients with TTP were expressed in Hela cells. The secretion, stability and VWF-cleaving activity of the mutants under static and flow conditions were examined.ResultsThe mutations impaired secretion of ADAMTS-13 to apical surface, but not to extracellular matrix of transfected Hela cells. C1213Y and K1256FS also accelerated, whereas W1245del delayed, extracellular degradation of the mutants. The mutations also resulted in a moderate decrease in cleaving plasma VWF under static conditions. However, the mutated ADAMTS-13 bound to VWF substrate similarly as the wild-type metalloprotease and remained active in cleaving (UL)VWF under flow conditions.ConclusionsThe CUB-1 domain is critical for ADAMTS-13 secretion and stability upon secretion. ADAMTS-13 deficiency found in TTP patients could be resulted from reduced ADAMTS-13 secretion and, in the case of C1213Y and K1256FS accelerated degradation. W1245del is highly resistant to degradation and active in cleaving VWF.
Journal: Thrombosis Research - Volume 124, Issue 3, July 2009, Pages 323–327