کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
305531 513032 2015 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Vertical tillage impacts on water quality derived from rainfall simulations
ترجمه فارسی عنوان
خاکستر عمودی بر کیفیت آب حاصل از شبیه سازی بارندگی تاثیر می گذارد
کلمات کلیدی
یوتروفیزیک، بدون خاکورزی، طبقه بندی فسفر، شبیه سازی بارش، شخم عمودی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی


• Vertical tillage has been gaining acceptance in the Midwestern US.
• Rainfall simulations were carried out on plots with no-till or vertical tillage.
• Vertical till delayed runoff but had greater peak discharge compared to no-tillage.
• Vertical till did not impact nutrient stratification that formed in no-till soil.
• Sediment and total P loads were greater from vertical till than no-till.

Increasing soluble phosphorus (SP) loads to Lake Erie occurring around the same time as the implementation of no-tillage in the watershed has led to speculation that this important conservation practice is a primary cause of the SP loading. Thus, conservationists are interested in finding management practices that will minimize stratification of P, which may be common in no-tillage systems, while also minimizing erosion losses that result from conventional tillage practices. As no-tillage was marketed as a practice to decrease sediment and total P (TP) loads, it is important to examine adoption of future conservation practices for their impact on multiple resource concerns. This study was conducted to determine if a shallow vertical tillage practice was sufficient to minimize P, N and atrazine loading from long-term no-tillage fields in a corn-soybean rotation, while maintaining minimal erosion. Rainfall simulations (average intensity of 53 mm h−1) were performed on no-tillage and vertical tillage plots (5 × 1 m) sufficient to produce 30 min of runoff. Runoff was collected every 2.5 min, and analyzed for sediment and nutrients (NH4–N, NO3–N, total Kjehldahl N (TKN), SP and TP). Runoff was delayed by 17 min using vertical tillage; however, the steady-state rate of runoff was significantly greater from vertical tillage compared to no-tillage. There were no significant differences for N from runoff (NH4–N, NO3–N, or TKN). There was a trend of slightly higher SP loads from vertical tillage than no-tillage. Total P losses were correlated with sediment, and were observed to be higher from vertical tillage than no-tillage. The primary advantage that vertical tillage has with respect to nutrient losses is in delaying runoff initiation, however this effect could be nullified in subsequent runoff events. If P loading to surface waters is the primary concern, it would appear from the data presented in this study that vertical tillage may not be an appropriate practice, and in fact may impose greater risks due to greater erosion and associated TP losses.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Soil and Tillage Research - Volume 153, November 2015, Pages 155–160
نویسندگان
, ,