کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
3065557 | 1580482 | 2007 | 6 صفحه PDF | دانلود رایگان |

Apoptotic elimination of pathogenic immune cells is considered one of several regulatory mechanisms in inflammatory diseases. To explore the potential relationship between detection of apoptotic cells in the cerebrospinal fluid (CSF) and different types of neurological diseases, we examined cellular apoptosis at the stage of DNA fragmentation, defined by morphological criteria and a molecular biology technique (in situ tailing). During a first phase, 3446 CSF samples derived from admitted patients suffering of inflammatory (IND) and non-inflammatory neurological diseases (NIND) were analysed in the course of routine clinical diagnostics. First, all specimens were inspected for cells displaying atypical morphology following established morphological criteria of intact lymphocytes or apoptosis. In a second phase, 76 additional CSF samples collected from individuals according to investigated clinical groups were analysed in parallel by means of in situ tailing, which indicates the advanced degree of apoptotic demise through labelling of controlled DNA fragmentation.No apoptotic processes were detected by either analytical method in CSF of clinically distinct diseases, amongst others multiple sclerosis (MS). This indicates that the detection of apoptotic cells in CSF during clinical routine diagnostics does not have sufficient explanatory power for the investigated conditions. Furthermore, based on immunohistochemistry, the proportion of CSF lymphocytes expressing the pro-apoptotic receptor Fas (CD95) tended to be higher in NIND patients compared to patients with other IND and MS, but the difference was not statistically significant. In contrast, expression of the anti-apoptotic protein Bcl-2 did not differ between investigated patient groups.
Journal: Journal of Neuroimmunology - Volume 188, Issues 1–2, August 2007, Pages 175–180