کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
3072103 1188744 2011 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Whole brain diffeomorphic metric mapping via integration of sulcal and gyral curves, cortical surfaces, and images
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله
Whole brain diffeomorphic metric mapping via integration of sulcal and gyral curves, cortical surfaces, and images
چکیده انگلیسی

This paper introduces a novel large deformation diffeomorphic metric mapping algorithm for whole brain registration where sulcal and gyral curves, cortical surfaces, and intensity images are simultaneously carried from one subject to another through a flow of diffeomorphisms. To the best of our knowledge, this is the first time that the diffeomorphic metric from one brain to another is derived in a shape space of intensity images and point sets (such as curves and surfaces) in a unified manner. We describe the Euler–Lagrange equation associated with this algorithm with respect to momentum, a linear transformation of the velocity vector field of the diffeomorphic flow. The numerical implementation for solving this variational problem, which involves large-scale kernel convolution in an irregular grid, is made feasible by introducing a class of computationally friendly kernels. We apply this algorithm to align magnetic resonance brain data. Our whole brain mapping results show that our algorithm outperforms the image-based LDDMM algorithm in terms of the mapping accuracy of gyral/sulcal curves, sulcal regions, and cortical and subcortical segmentation. Moreover, our algorithm provides better whole brain alignment than combined volumetric and surface registration (Postelnicu et al., 2009) and hierarchical attribute matching mechanism for elastic registration (HAMMER) (Shen and Davatzikos, 2002) in terms of cortical and subcortical volume segmentation.

Research highlights
► A method for simultaneously mapping brain images, surfaces, and curves.
► Diffeomorphic metric in shape spaces of images and point sets in a unified manner.
► A numerical scheme for solving large-scale kernel convolution in irregular grids.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 56, Issue 1, 1 May 2011, Pages 162–173
نویسندگان
, , ,