کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
3073015 1188820 2008 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Understanding brain connectivity from EEG data by identifying systems composed of interacting sources
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله
Understanding brain connectivity from EEG data by identifying systems composed of interacting sources
چکیده انگلیسی

In understanding and modeling brain functioning by EEG/MEG, it is not only important to be able to identify active areas but also to understand interference among different areas. The EEG/MEG signals result from the superimposition of underlying brain source activities volume conducted through the head. The effects of volume conduction produce spurious interactions in the measured signals. It is fundamental to separate true source interactions from noise and to unmix the contribution of different systems composed by interacting sources in order to understand interference mechanisms.As a prerequisite, we consider the problem of unmixing the contribution of uncorrelated sources to a measured field. This problem is equivalent to the problem of unmixing the contribution of different uncorrelated compound systems composed by interacting sources. To this end, we develop a principal component analysis-based method, namely, the source principal component analysis (sPCA), which exploits the underlying assumption of orthogonality for sources, estimated from linear inverse methods, for the extraction of essential features in signal space.We then consider the problem of demixing the contribution of correlated sources that comprise each of the compound systems identified by using sPCA. While the sPCA orthogonality assumption is sufficient to separate uncorrelated systems, it cannot separate the individual components within each system. To address that problem, we introduce the Minimum Overlap Component Analysis (MOCA), employing a pure spatial criterion to unmix pairs of correlates (or coherent) sources. The proposed methods are tested in simulations and applied to EEG data from human µ and α rhythms.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 42, Issue 1, 1 August 2008, Pages 87–98
نویسندگان
, , ,