کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
31672 44828 2011 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An in vivo data-driven framework for classification and quantification of enzyme kinetics and determination of apparent thermodynamic data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
An in vivo data-driven framework for classification and quantification of enzyme kinetics and determination of apparent thermodynamic data
چکیده انگلیسی

Kinetic modeling of metabolism holds great potential for metabolic engineering but is hindered by the gap between model complexity and availability of in vivo data. There is also growing interest in network-wide thermodynamic analyses, which are currently limited by the scarcity and unreliability of thermodynamic reference data. Here we propose an in vivo data-driven approach to simultaneously address both problems. We then demonstrate the procedure in Saccharomyces cerevisiae, using chemostats to generate a large flux/metabolite dataset, under 32 conditions spanning a large range of fluxes.Reactions were classified as pseudo-, near- or far-from-equilibrium, allowing the complexity of mathematical description to be tailored to the kinetic behavior displayed in vivo. For 3/4 of the reactions we derived fully in vivo-parameterized kinetic descriptions which can be readily incorporated into models. For near-equilibrium reactions this involved a new simplified format, dubbed “Q-linear kinetics”. We also demonstrate, for the first time, systematic estimation of apparent in vivo Keq values. Remarkably, comparison with E. coli data suggests they constitute a suitable in vivo interspecies thermodynamic reference.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Metabolic Engineering - Volume 13, Issue 3, May 2011, Pages 294–306
نویسندگان
, , , , ,