کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
3380165 1220196 2012 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mitochondrial electron transport and glycolysis are coupled in articular cartilage
موضوعات مرتبط
علوم پزشکی و سلامت پزشکی و دندانپزشکی ایمونولوژی، آلرژی و روماتولوژی
پیش نمایش صفحه اول مقاله
Mitochondrial electron transport and glycolysis are coupled in articular cartilage
چکیده انگلیسی

SummaryObjectiveAlthough the majority of the adenosine triphosphate (ATP) in chondrocytes is made by glycolysis rather than by oxidative phosphorylation in mitochondria there is evidence to suggest that reactive oxygen species produced by mitochondrial electron transport (ET) help to maintain cellular redox balance in favor of glycolysis. The objective of this study was to test this hypothesis by determining if rotenone, which inhibits ET and blocks oxidant production inhibits glycolytic ATP synthesis.DesignBovine osteochondral explants were treated with rotenone, an ET inhibitor; or oligomycin an ATP synthase inhibitor; or 2-fluoro-2-deoxy-d-glucose, a glycolysis inhibiter; or peroxide, an exogenous oxidant; or mitoquinone (MitoQ), a mitochondria-targeted anti-oxidant. Cartilage extracts were assayed for ATP, nicotine adenine dinucleotide (NAD+/H), and culture medium was assayed for pyruvate and lactate after 24 h of treatment. Imaging studies were used to measure superoxide production in cartilage.ResultsRotenone and 2-FG caused a significant decline in cartilage ATP (P < 0.001). In contrast, ATP levels were not affected by oligomycin. Peroxide treatment blocked rotenone effects on ATP, while treatment with MitoQ significantly suppressed ATP levels. Rotenone and 2-FG caused a significant decline in pyruvate, but not in lactate production. NADH:NAD+ ratios decreased significantly in both rotenone and 2-FG-treated explants (P < 0.05). Rotenone also significantly reduced superoxide production.ConclusionsThese findings showing a link between glycolysis and ET are consistent with previous reports on the critical need for oxidants to support normal chondrocyte metabolism. They suggest a novel role for mitochondria in cartilage homeostasis that is independent of oxidative phosphorylation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Osteoarthritis and Cartilage - Volume 20, Issue 4, April 2012, Pages 323–329
نویسندگان
, , , , , , ,