کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
340428 | 548274 | 2016 | 10 صفحه PDF | دانلود رایگان |
• SCN1A screening conducted in 46 Turkish patients with DS spectrum phenotypes.
• Nineteen mutations were identified, 12 of which were novel.
• Mutations on homology domains yielded earlier onset than mutations on linker domains.
• An NGS method for rapid and efficient screening of SCN1A gene was described.
PurposeThe SCN1A gene is one of the most commonly mutated human epilepsy genes associated with a spectrum of phenotypes with variable degrees of severity. Despite over 1200 distinct mutations reported, it is still hard to draw clear genotype−phenotype relationships, since genetic and environmental modifiers contribute to the development of a particular disease caused by an SCN1A mutation. We aimed to initiate mutational screening of the SCN1A gene in Turkey and advance further our understanding of the relationship between the SCN1A sequence alterations and disease phenotypes such as GEFS+, DS and related epileptic encephalopathies.MethodsMutational analysis of the SCN1A gene was carried out in 46 patients with DS, late-onset DS, GEFS+ and unspecified EE using either direct Sanger sequencing of the coding regions and exon/intron boundaries or massively parallel sequencing.ResultsNineteen point mutations, 12 of which were novel were identified, confirming the clinical diagnosis of the patients. Patients with a mutation (either truncating or missense) on linker regions had significantly later disease onset than patients with mutations in homology regions. The presence of SCN1A mutations in two clinically unclassified patients supported the association of SCN1A mutations with a wide range of phenotypes.ConclusionThe conventional Sanger sequencing method was successfully initiated for the detection of SCN1A point mutations in Turkey in epilepsy patients. Furthermore, a modified strategy of massively parallel pyro-sequencing was also established as a rapid and effective mutation detection method for large genes as SCN1A.
Journal: Seizure - Volume 39, July 2016, Pages 34–43