کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
3444835 1595301 2010 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Accounting for Response Misclassification and Covariate Measurement Error Improves Power and Reduces Bias in Epidemiologic Studies
موضوعات مرتبط
علوم پزشکی و سلامت پزشکی و دندانپزشکی پزشکی و دندانپزشکی (عمومی)
پیش نمایش صفحه اول مقاله
Accounting for Response Misclassification and Covariate Measurement Error Improves Power and Reduces Bias in Epidemiologic Studies
چکیده انگلیسی

PurposeTo quantify the impact of ignoring misclassification of a response variable and measurement error in a covariate on statistical power, and to develop software for sample size and power analysis that accounts for these flaws in epidemiologic data.MethodsA Monte Carlo simulation-based procedure is developed to illustrate the differences in design requirements and inferences between analytic methods that properly account for misclassification and measurement error to those that do not in regression models for cross-sectional and cohort data.ResultsWe found that failure to account for these flaws in epidemiologic data can lead to a substantial reduction in statistical power, over 25% in some cases. The proposed method substantially reduced bias by up to a ten-fold margin compared to naive estimates obtained by ignoring misclassification and mismeasurement.ConclusionsWe recommend as routine practice that researchers account for errors in measurement of both response and covariate data when determining sample size, performing power calculations, or analyzing data from epidemiological studies.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Epidemiology - Volume 20, Issue 7, July 2010, Pages 562–567
نویسندگان
, , ,