کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
37224 45325 2011 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mining high-throughput experimental data to link gene and function
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
Mining high-throughput experimental data to link gene and function
چکیده انگلیسی

Nearly 2200 genomes that encode around 6 million proteins have now been sequenced. Around 40% of these proteins are of unknown function, even when function is loosely and minimally defined as ‘belonging to a superfamily’. In addition to in silico methods, the swelling stream of high-throughput experimental data can give valuable clues for linking these unknowns with precise biological roles. The goal is to develop integrative data-mining platforms that allow the scientific community at large to access and utilize this rich source of experimental knowledge. To this end, we review recent advances in generating whole-genome experimental datasets, where this data can be accessed, and how it can be used to drive prediction of gene function.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: - Volume 29, Issue 4, April 2011, Pages 174–182
نویسندگان
, ,