کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
380167 1437423 2016 19 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
A graph search and neural network approach to adaptive nonlinear model predictive control
ترجمه فارسی عنوان
جستجو نمودار و روش شبکه های عصبی برای کنترل تطبیقی پیش بینانه مدل غیرخطی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
خدمات تولید محتوا

این مقاله ISI می تواند منبع ارزشمندی برای تولید محتوا باشد.

  • تولید محتوا برای سایت و وبلاگ
  • تولید محتوا برای کتاب
  • تولید محتوا برای نشریات و روزنامه ها
  • و...

پایگاه «دانشیاری» آمادگی دارد با همکاری مجموعه «شهر محتوا» با استفاده از این مقاله علمی، برای شما به زبان فارسی، تولید محتوا نماید.

تولید محتوا
با 10 درصد تخفیف ویژه دانشیاری
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Systems with a priori unknown and time-varying dynamic behavior pose a significant challenge in the field of Nonlinear Model Predictive Control (NMPC). When both the identification of the nonlinear system and the optimization of control inputs are done robustly and efficiently, NMPC may be applied to control such systems. This paper considers stable systems and presents a novel method for adaptive NMPC, called Adaptive Sampling Based Model Predictive Control (Adaptive SBMPC), that combines a radial basis function neural network identification algorithm with a nonlinear optimization method based on graph search. Unlike other NMPC methods, it does not rely on linearizing the system or gradient based optimization. Instead, it discretizes the input space to the model via pseudo-random sampling and feeds the sampled inputs through the nonlinear model, producing a searchable graph. For this discretization, an optimal path is found using Lifelong Planning A⁎, an efficient graph search method. Adaptive SBMPC is used in simulation to identify and control a simple plant with clearly visualized nonlinear behavior. In these simulations, both fixed and time-varying dynamic systems are considered. Results are compared with an adaptive version of Neural GPC, an existing NMPC algorithm based on Newton–Raphson optimization and a back propagation neural network model. When the cost function exhibits many local minima, Adaptive SBMPC is successful in finding a low-cost solution that appears close globally optimal while Neural GPC converges to a solution that is only locally optimal. This paper presents the method, soundness and completeness theory, and two simulated NMPC examples. The first is a transparent single-input single-output example, and the second considers a more complex power plant combustion process with two inputs and three outputs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 55, October 2016, Pages 250–268
نویسندگان
, ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت