کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
380546 | 1437447 | 2014 | 14 صفحه PDF | دانلود رایگان |

• Game theory principles applied to Intrusion Detection and Prevention System (IDPS).
• Modeled cooperative game based IDPS using fuzzy Q-learning (FQL) technique.
• Attack detection and defense mechanism yields higher accuracy rates against attacks.
• Attack detection and defense accuracy yields higher improvement over its competitors.
• Performance of game based FQL results in better energy consumption levels in WSNs.
Owing to the distributed nature of denial-of-service attacks, it is tremendously challenging to detect such malicious behavior using traditional intrusion detection systems in Wireless Sensor Networks (WSNs). In the current paper, a game theoretic method is introduced, namely cooperative Game-based Fuzzy Q-learning (G-FQL). G-FQL adopts a combination of both the game theoretic approach and the fuzzy Q-learning algorithm in WSNs. It is a three-player strategy game consisting of sink nodes, a base station, and an attacker. The game performs at any time a victim node in the network receives a flooding packet as a DDoS attack beyond a specific alarm event threshold in WSN. The proposed model implements cooperative defense counter-attack scenarios for the sink node and the base station to operate as rational decision-maker players through a game theory strategy. In order to evaluate the performance of the proposed model, the Low Energy Adaptive Clustering Hierarchy (LEACH) was simulated using NS-2 simulator. The model is subsequently compared against other existing soft computing methods, such as fuzzy logic controller, Q-learning, and fuzzy Q-learning, in terms of detection accuracy, counter-defense, network lifetime and energy consumption, to demonstrate its efficiency and viability. The proposed model׳s attack detection and defense accuracy yield a greater improvement than existing above-mentioned machine learning methods. In contrast to the Markovian game theoretic, the proposed model operates better in terms of successful defense rate.
Journal: Engineering Applications of Artificial Intelligence - Volume 32, June 2014, Pages 228–241