کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
384059 660839 2010 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A novel measure for evaluating classifiers
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A novel measure for evaluating classifiers
چکیده انگلیسی

Evaluating classifier performances is a crucial problem in pattern recognition and machine learning. In this paper, we propose a new measure, i.e. confusion entropy, for evaluating classifiers. For each class clicli of an (N+1)(N+1)-class problem, the misclassification information involves both the information of how the samples with true class label clicli have been misclassified to the other N classes and the information of how the samples of the other N   classes have been misclassified to class clicli. The proposed measure exploits the class distribution information of such misclassifications of all classes. Both theoretical analysis and statistical experiments show the proposed measure is more precise than accuracy and RCI. Experimental results on some benchmark data sets further confirm the theoretical analysis and statistical results and show that the new measure is feasible for evaluating classifier performances.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 37, Issue 5, May 2010, Pages 3799–3809
نویسندگان
, , , ,