کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
385379 | 660865 | 2011 | 7 صفحه PDF | دانلود رایگان |

Multilevel thresholding is an important technique for image processing and pattern recognition. The maximum entropy thresholding (MET) has been widely applied in the literature. In this paper, a new multilevel MET algorithm based on the technology of the artificial bee colony (ABC) algorithm is proposed: the maximum entropy based artificial bee colony thresholding (MEABCT) method. Four different methods are compared to this proposed method: the particle swarm optimization (PSO), the hybrid cooperative-comprehensive learning based PSO algorithm (HCOCLPSO), the Fast Otsu’s method and the honey bee mating optimization (HBMO). The experimental results demonstrate that the proposed MEABCT algorithm can search for multiple thresholds which are very close to the optimal ones examined by the exhaustive search method. Compared to the other four thresholding methods, the segmentation results of using the MEABCT algorithm is the most, however, the computation time by using the MEABCT algorithm is shorter than that of the other four methods.
► The artificial bee algorithm is applied to select for the thresholds for segmenting the images.
► The four evolutionary algorithms are also implemented for comparison with the results of proposed algorithm.
► The experimental results of proposed algorithm demonstrate that the proposed method is superior to other methods.
Journal: Expert Systems with Applications - Volume 38, Issue 11, October 2011, Pages 13785–13791