کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
386670 660889 2009 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Prediction of silicon content in hot metal using support vector regression based on chaos particle swarm optimization
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Prediction of silicon content in hot metal using support vector regression based on chaos particle swarm optimization
چکیده انگلیسی

The prediction of silicon content in hot metal has been a major study subject as one of the most important means for the monitoring state in ferrous metallurgy industry. A prediction model of silicon content is established based on the support vector regression (SVR) whose optimal parameters are selected by chaos particle swarm optimization. The data of the model are collected from No. 3 BF in Panzhihua Iron and Steel Group Co. of China. The results show that the proposed prediction model has better prediction results than neural network trained by chaos particle swarm optimization and least squares support vector regression, the percentage of samples whose absolute prediction errors are less than 0.03 when predicting silicon content by the proposed model is higher than 90%, it indicates that the prediction precision can meet the requirement of practical production.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 36, Issue 9, November 2009, Pages 11853–11857
نویسندگان
, , ,