کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
386763 | 660890 | 2010 | 6 صفحه PDF | دانلود رایگان |

Urinary incontinence is one of the largest diseases affecting between 10% and 30% of the adult population and an increase is expected in the next decade with rising treatment costs as a consequence. There are many types of urological dysfunctions causing urinary incontinence, which makes cheap and accurate diagnosing an important issue. This paper proposes a support vector machine (SVM) based method for diagnosing urological dysfunctions. 381 registers collected from patients suffering from a variety of urological dysfunctions have been used to ensure the (generalization) performance of the decision support system. Moreover, the robustness of the proposed system is examined by fivefold cross-validation and the results show that the SVM-based method can achieve an average classification accuracy at 84.25%.
Journal: Expert Systems with Applications - Volume 37, Issue 6, June 2010, Pages 4713–4718