کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
386950 660893 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An expert system to predict protein thermostability using decision tree
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
An expert system to predict protein thermostability using decision tree
چکیده انگلیسی

Protein thermostability information is closely linked to commercial production of many biomaterials. Recent developments have shown that amino acid composition, special sequence patterns and hydrogen bonds, disulfide bonds, salt bridges and so on are of considerable importance to thermostability. In this study, we present a system to integrate these various factors that predict protein thermostability. In this study, the features of proteins in the PGTdb are analyzed. We consider both structure and sequence features and correlation coefficients are incorporated into the feature selection algorithm. Machine learning algorithms are then used to develop identification systems and performances between the different algorithms are compared. In this research, two features, (E + F + M + R)/residue and charged/non-charged, are found to be critical to the thermostability of proteins. Although the sequence and structural models achieve a higher accuracy, sequence-only models provides sufficient accuracy for sequence-only thermostability prediction.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 36, Issue 5, July 2009, Pages 9007–9014
نویسندگان
, , , , ,