کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
387187 660897 2009 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A genetic encoding approach for learning methods for combining classifiers
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A genetic encoding approach for learning methods for combining classifiers
چکیده انگلیسی

Several studies have reported that the ensemble of classifiers can improve the performance of a stand-alone classifier. In this paper, we propose a learning method for combining the predictions of a set of classifiers.The method described in this paper uses a genetic-based version of the correspondence analysis for combining classifiers. The correspondence analysis is based on the orthonormal representation of the labels assigned to the patterns by a pool of classifiers. In this paper instead of the orthonormal representation we use a pool of representations obtained by a genetic algorithm. Each single representation is used to train a different classifiers, these classifiers are combined by vote rule.The performance improvement with respect to other learning-based fusion methods is validated through experiments with several benchmark datasets.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 36, Issue 4, May 2009, Pages 7510–7514
نویسندگان
, ,