کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
387729 660907 2006 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A GA-based feature selection and parameters optimizationfor support vector machines
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A GA-based feature selection and parameters optimizationfor support vector machines
چکیده انگلیسی

Support Vector Machines, one of the new techniques for pattern classification, have been widely used in many application areas. The kernel parameters setting for SVM in a training process impacts on the classification accuracy. Feature selection is another factor that impacts classification accuracy. The objective of this research is to simultaneously optimize the parameters and feature subset without degrading the SVM classification accuracy. We present a genetic algorithm approach for feature selection and parameters optimization to solve this kind of problem.We tried several real-world datasets using the proposed GA-based approach and the Grid algorithm, a traditional method of performing parameters searching. Compared with the Grid algorithm, our proposed GA-based approach significantly improves the classification accuracy and has fewer input features for support vector machines.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 31, Issue 2, August 2006, Pages 231–240
نویسندگان
, ,