کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
389141 661099 2016 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ensuring reliability of the weighting vector: Weak consistent pairwise comparison matrices
ترجمه فارسی عنوان
اطمینان از قابلیت اطمینان بردار وزن: ماتریس مقایسه دو به دو سازگار ضعیف
کلمات کلیدی
ارزیابی چندمعیاره؛ گروه منظم خطی Abelian ؛ ماتریس مقایسه زوجی؛ ⊙ انسجام ضعیف؛ بردار اولویت انسجام
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

In the context of Pairwise Comparison Matrices (PCMs) defined over abelian linearly ordered group, ⊙-consistency and ⊙-transitivity represent a full coherence of the Decision Maker (DM) and the minimal logical requirement that DM's preferences should satisfy, respectively. Moreover, the ⊙-mean vector wm⊙wm⊙ is proposed as weighting vector for the decision elements related to the PCM. In this paper, we investigate the effects of ⊙-inconsistency of a ⊙-transitive PCM on wm⊙wm⊙ and, in order to ensure its reliability as weighting vector, we provide the notion of weak ⊙-consistency; it is weaker than ⊙-consistency and stronger than ⊙-transitivity, and ensures that vectors associated with a PCM, by means of a strictly increasing synthesis functional, are reliable for assigning a preference order on the set of related decision elements. The ⊙-mean vector wm⊙wm⊙ is associated with a PCM by means of one of these functionals. Finally, we introduce an order relation on the rows of the PCM, that is a simple order if and only if the condition of weak ⊙-consistency is satisfied; the simple order allows us to easily determine the actual ranking on the set of related decision elements.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fuzzy Sets and Systems - Volume 296, 1 August 2016, Pages 21–34
نویسندگان
, ,