کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
389507 661150 2016 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Evidence-theory-based numerical characterization of multigranulation rough sets in incomplete information systems
ترجمه فارسی عنوان
ویژگی های عددی مبتنی بر تئوری مبتنی بر نظریه های چند مجموعه ای خشن در سیستم های اطلاعات ناقص
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Multigranulation rough sets are desirable features in the field of rough set, where this concept is approximated by multiple granular structures. In this study, we employ belief and plausibility functions from evidence theory to characterize the set approximations and attribute reductions in multigranulation rough set theory. First, we show that in an incomplete information system, the pessimistic multigranulation approximations can be measured by belief and plausibility functions, whereas the optimistic multigranulation approximations do not possess this characteristic in general. We also give a sufficient and necessary condition for the numerical measurement of optimistic multigranulation approximations by belief and plausibility functions. Second, in an incomplete decision system, the pessimistic multigranulation approximations are also measured by belief and plausibility functions. In the end, an attribute reduction algorithm for multigranulation rough sets is proposed based on evidence theory, and its efficiency is examined by an example. Thus, belief and plausibility functions can be employed to numerically characterize the attribute reductions and to construct an attribute reduction algorithm for multigranulation rough sets.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fuzzy Sets and Systems - Volume 294, 1 July 2016, Pages 18–35
نویسندگان
, , , ,