کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
391641 | 661904 | 2014 | 22 صفحه PDF | دانلود رایگان |
• A new joint possibilistic data association technique is proposed.
• It determines joint possibilities over all targets and hits.
• It updates the predicted target state estimate using possibility weights.
• The possibility weights are determined such that the total sum of the distances is minimized.
• Simulated results showed its simplicity and efficiency.
Multitarget tracking in a cluttered environment is a significant issue with a wide variety of applications. A typical approach to address this issue is the joint probabilistic data association (JPDA) technique. This technique determines joint probabilities over all targets and hits and updates the predicted target state estimate using a probability-weighted sum of innovations. This paper proposes a new joint possibilistic data association technique for tracking multiple targets. Unlike the JPDA technique, the proposed technique determines joint possibilities over all targets and hits and updates the predicted target state estimate using a possibility-weighted sum of innovations. The possibility weights are determined using the noise covariance matrices and the current received measurements such that the total sum of the distances between all measurements and targets is minimized. The proposed technique performs data association based on a possibility matrix of measurements to trajectories; thus, it highly reduces the computational complexity compared to conventional data association techniques. The proposed association technique is applied to examples of multitarget tracking in a cluttered environment, and the results demonstrate its efficiency.
Journal: Information Sciences - Volume 280, 1 October 2014, Pages 239–260