کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
392009 664592 2015 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An adaptive simplified human learning optimization algorithm
ترجمه فارسی عنوان
یک الگوریتم بهینه سازی یادگیری انسانی ساده سازگار
کلمات کلیدی
بهینه سازی یادگیری انسانی، فراماسونری، بهینه سازی جهانی، یادگیری اجتماعی، یادگیری فردی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

This paper presents a novel meta-heuristic optimization algorithm, named Adaptive Simplified Human Learning Optimization (ASHLO), which is inspired by the human learning mechanisms. Three learning operators, i.e. the random learning operator, the individual learning operator, and the social learning operator, are developed to generate new solutions and search for the optima by mimicking the learning behaviors of humans. The numerical functions, deceptive functions and 0–1 knapsack problems are adopted as benchmark problems to validate the performance of ASHLO, and the results are compared with those of binary particle swarm optimization (BPSO), modified binary differential evolution (MBDE), the binary fruit fly optimization algorithm (bFOA) and adaptive binary harmony search (ABHS). The experimental results demonstrate that the developed ASHLO significantly outperforms BPSO, MBDE, bFOA and ABHS and has a robust search ability for various problems. With the adaptive strategy, the search ability of ASHLO is improved further especially on the high-dimensional and complicated problems. Considering the ease of implementation, the excellence of global search ability and the robustness for various problems, ASHLO is a promising optimization tool for scientific research and engineering applications.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 320, 1 November 2015, Pages 126–139
نویسندگان
, , , , , ,