کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
392480 664774 2013 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A twin-hypersphere support vector machine classifier and the fast learning algorithm
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A twin-hypersphere support vector machine classifier and the fast learning algorithm
چکیده انگلیسی

This paper formulates a twin-hypersphere support vector machine (THSVM) classifier for binary recognition. Similar to the twin support vector machine (TWSVM) classifier, this THSVM determines two hyperspheres by solving two related support vector machine (SVM)-type problems, each one is smaller than the classical SVM, which makes the THSVM be more efficient than the classical SVM. In addition, the THSVM avoids the matrix inversions in its two dual quadratic programming problems (QPPs) compared with the TWSVM. By considering the characteristics of the dual QPPs of THSVM, an efficient Gilbert’s algorithm for the THSVM based on the reduced convex hull (RCH) instead of directly optimizing its pair of QPPs is further presented. Computational results on several synthetic as well as benchmark datasets indicate the significant advantages of the THSVM classifier in the computational time and test accuracy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 221, 1 February 2013, Pages 12–27
نویسندگان
, ,