کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
392498 | 664774 | 2013 | 10 صفحه PDF | دانلود رایگان |

Gesture recognition plays an important role in human machine interactions (HMIs) for multimedia entertainment. In this paper, we present a dimension reduction based approach for dynamic real-time hand gesture recognition. The hand gestures are recorded as acceleration signals by using a handheld with a 3-axis accelerometer sensor installed, and represented by discrete cosine transform (DCT) coefficients. To recognize different hand gestures, we develop a new dimension reduction method, locally regularized sliced inverse regression (LR-SIR), to find an effective low dimensional subspace, in which different hand gestures are well separable, following which recognition can be performed by using simple and efficient classifiers, e.g., nearest mean, k-nearest-neighbor rule and support vector machine. LR-SIR is built upon the well-known sliced inverse regression (SIR), but overcomes its limitation that it ignores the local geometry of the data distribution. Besides, LR-SIR can be effectively and efficiently solved by eigen-decomposition. Finally, we apply the LR-SIR based gesture recognition to control our recently developed dance robot for multimedia entertainment. Thorough empirical studies on ‘digits’-gesture recognition suggest the effectiveness of the new gesture recognition scheme for HMI.
Journal: Information Sciences - Volume 221, 1 February 2013, Pages 274–283