کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
392825 665173 2014 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Clustering-based ensembles for one-class classification
ترجمه فارسی عنوان
گروه های مبتنی بر خوشه بندی برای طبقه بندی یک طبقه
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

This paper presents a novel multi-class classifier based on weighted one-class support vector machines (OCSVM) operating in the clustered feature space. We show that splitting the target class into atomic subsets and using these as input for one-class classifiers leads to an efficient and stable recognition algorithm. The proposed system extends our previous works on combining OCSVM classifiers to solve both one-class and multi-class classification tasks. The main contribution of this work is the novel architecture for class decomposition and combination of classifier outputs. Based on the results of a large number of computational experiments we show that the proposed method outperforms both the OCSVM for a single class, as well as the multi-class SVM for multi-class classification problems. Other advantages are the highly parallel structure of the proposed solution, which facilitates parallel training and execution stages, and the relatively small number of control parameters.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 264, 20 April 2014, Pages 182–195
نویسندگان
, , ,