کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
393078 665565 2015 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A real-coded genetic algorithm with a direction-based crossover operator
ترجمه فارسی عنوان
یک الگوریتم ژنتیک واقعی با اپراتور متقاطع مبتنی بر جهت
کلمات کلیدی
الگوریتم تکاملی، الگوریتم ژنتیک واقعی، ساختار موازی، بهینه سازی پارامتر واقعی، طرح بهینه سازی داده محور تنظیم پارامتر
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

In this paper, we develop a parallel-structured real-coded genetic algorithm (RCGA), named the RGA-RDD, for numerical optimization. Technically, the proposed RGA-RDD integrates three specially designed evolutionary operators – the Ranking Selection (RS), Direction-Based Crossover (DBX), and the Dynamic Random Mutation (DRM) – as a whole to mimic a specific evolutionary process. Unlike the conventional RCGAs that perform evolutionary operators in a series framework, the RGA-RDD embeds a coordinator in the inner parallel loop to organize the operations of the DBX and DRM so that a higher possibility of locating the global optimum is ensured. Besides, based on the results of a systematic parametric analysis, we provide a parameter selection guideline for the settings of the proposed RGA-RDD. Furthermore, a data-driven optimization scheme, which incorporates the uniform design for design of experiments and a shape-tunable neural network for auxiliary decision support, is applied to search for an optimal set of the algorithm parameters. The effectiveness and applicability of the proposed RGA-RDD are demonstrated through a variety of benchmarked optimization problems, followed by comprehensive comparisons with some existing state-of-the-art evolutionary algorithms. Extensive simulation results reveal that the performance of the proposed RGA-RDD is superior to comparative methods in locating the global optimum for real-parameter optimization problems, especially for unsolved multimodal and high-dimensional hybrid functions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 305, 1 June 2015, Pages 320–348
نویسندگان
, , ,