کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
393122 665572 2015 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modified cuckoo search algorithm with self adaptive parameter method
ترجمه فارسی عنوان
الگوریتم جستجوی زخم اصلاح شده با روش پارامتر خود سازگار
کلمات کلیدی
الگوریتم جستجوی کوکنار، بهینه سازی عددی جهانی، خود تطبیقی، اکتشاف، بهره برداری، سیستم هرج و مرج
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

The cuckoo search algorithm (CS) is a simple and effective global optimization algorithm. It has been applied to solve a wide range of real-world optimization problem. In this paper, the proposed method uses two new mutation rules based on the rand and best individuals among the entire population. In order to balance the exploitation and exploration of the algorithm, the new rules are combined through a linear decreasing probability rule. Then, self adaptive parameter setting is introduced as a uniform random value to enhance the diversity of the population based on the relative success number of the proposed two new parameters in the previous period. To verify the performance of SACS, 16 benchmark functions chosen from literature are employed. Experimental results indicate that the proposed method performs better than, or at least comparable to state-of-the-art methods from literature when considering the quality of the solutions obtained. In the last part, experiments have been conducted on Lorenz system and Chen system to estimate the parameters of these two chaotic systems. Simulation results further demonstrate the proposed method is very effective.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 298, 20 March 2015, Pages 80–97
نویسندگان
, ,