کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
393348 665636 2012 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multi-sensor data fusion using support vector machine for motor fault detection
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Multi-sensor data fusion using support vector machine for motor fault detection
چکیده انگلیسی

Motor fault diagnosis in dynamic condition is a typical multi-sensor data fusion problem. It involves the use of information collected from multiple sensors, such as vibration, sound, current, voltage, and temperature, to detect and identify motor faults. From the viewpoint of evidence theory, information obtained from each sensor can be considered as a piece of evidence, and as such, the multi-sensor based motor fault diagnosis can be viewed as the problem of evidence fusion. In this article we propose and investigate a hybrid method for fault signal classification based on sensor data fusion by using the Support Vector Machine (SVM) and Short Term Fourier Transform (STFT) techniques. We report a practical application of this hybrid model and evaluate its performance. Finally, we compare the performance of the proposed system against some other standard fault classification techniques.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 217, 25 December 2012, Pages 96–107
نویسندگان
, ,