کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
393416 665650 2013 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A time series forest for classification and feature extraction
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A time series forest for classification and feature extraction
چکیده انگلیسی

A tree-ensemble method, referred to as time series forest (TSF), is proposed for time series classification. TSF employs a combination of entropy gain and a distance measure, referred to as the Entrance (entropy and distance) gain, for evaluating the splits. Experimental studies show that the Entrance gain improves the accuracy of TSF. TSF randomly samples features at each tree node and has computational complexity linear in the length of time series, and can be built using parallel computing techniques. The temporal importance curve is proposed to capture the temporal characteristics useful for classification. Experimental studies show that TSF using simple features such as mean, standard deviation and slope is computationally efficient and outperforms strong competitors such as one-nearest-neighbor classifiers with dynamic time warping.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 239, 1 August 2013, Pages 142–153
نویسندگان
, , , ,