کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
393529 665654 2014 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Action recognition based on overcomplete independent components analysis
ترجمه فارسی عنوان
تشخیص عمل بر اساس تجزیه و تحلیل اجزای مستقل بیش از حد کامل است
کلمات کلیدی
تشخیص عمل، یادگیری ویژگی تجزیه و تحلیل جزء مستقل، نمایندگی بیش از حد کامل
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Existing works on action recognition rely on two separate stages: (1) designing hand-designed features or learning features from video data; (2) classifying features using a classifier such as SVM or AdaBoost. Motivated by two observations: (1) independent component analysis (ICA) is capable of encoding intrinsic features underlying video data; and (2) videos of different actions can be easily distinguished by their intrinsic features, we propose a simple but effective action recognition framework based on the recently proposed overcomplete ICA model. After a set of overcomplete ICA basis functions are learned from the densely sampled 3D patches from training videos for each action, a test video is classified as the class whose basis functions can reconstruct the sampled 3D patches from the test video with the smallest reconstruction error. The experimental results on five benchmark datasets demonstrate that the proposed approach outperforms several state-of-the-art works.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 281, 10 October 2014, Pages 635–647
نویسندگان
, , , , , , ,