کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
393586 665657 2011 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Enhancing particle swarm optimization using generalized opposition-based learning
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Enhancing particle swarm optimization using generalized opposition-based learning
چکیده انگلیسی

Particle swarm optimization (PSO) has been shown to yield good performance for solving various optimization problems. However, it tends to suffer from premature convergence when solving complex problems. This paper presents an enhanced PSO algorithm called GOPSO, which employs generalized opposition-based learning (GOBL) and Cauchy mutation to overcome this problem. GOBL can provide a faster convergence, and the Cauchy mutation with a long tail helps trapped particles escape from local optima. The proposed approach uses a similar scheme as opposition-based differential evolution (ODE) with opposition-based population initialization and generation jumping using GOBL. Experiments are conducted on a comprehensive set of benchmark functions, including rotated multimodal problems and shifted large-scale problems. The results show that GOPSO obtains promising performance on a majority of the test problems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 181, Issue 20, 15 October 2011, Pages 4699–4714
نویسندگان
, , , , ,