کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
394139 665779 2013 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multi-label ensemble based on variable pairwise constraint projection
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Multi-label ensemble based on variable pairwise constraint projection
چکیده انگلیسی

Multi-label classification has attracted an increasing amount of attention in recent years. To this end, many algorithms have been developed to classify multi-label data in an effective manner. However, they usually do not consider the pairwise relations indicated by sample labels, which actually play important roles in multi-label classification. Inspired by this, we naturally extend the traditional pairwise constraints to the multi-label scenario via a flexible thresholding scheme. Moreover, to improve the generalization ability of the classifier, we adopt a boosting-like strategy to construct a multi-label ensemble from a group of base classifiers. To achieve these goals, this paper presents a novel multi-label classification framework named Variable Pairwise Constraint projection for Multi-label Ensemble (VPCME). Specifically, we take advantage of the variable pairwise constraint projection to learn a lower-dimensional data representation, which preserves the correlations between samples and labels. Thereafter, the base classifiers are trained in the new data space. For the boosting-like strategy, we employ both the variable pairwise constraints and the bootstrap steps to diversify the base classifiers. Empirical studies have shown the superiority of the proposed method in comparison with other approaches.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 222, 10 February 2013, Pages 269–281
نویسندگان
, , ,