کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
394217 | 665785 | 2011 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Dynamic time warping constraint learning for large margin nearest neighbor classification
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Nearest neighbor (NN) classifier with dynamic time warping (DTW) is considered to be an effective method for time series classification. The performance of NN-DTW is dependent on the DTW constraints because the NN classifier is sensitive to the used distance function. For time series classification, the global path constraint of DTW is learned for optimization of the alignment of time series by maximizing the nearest neighbor hypothesis margin. In addition, a reduction technique is combined with a search process to condense the prototypes. The approach is implemented and tested on UCR datasets. Experimental results show the effectiveness of the proposed method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 181, Issue 13, 1 July 2011, Pages 2787–2796
Journal: Information Sciences - Volume 181, Issue 13, 1 July 2011, Pages 2787–2796
نویسندگان
Daren Yu, Xiao Yu, Qinghua Hu, Jinfu Liu, Anqi Wu,