کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
394325 665792 2010 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Pairwise-adaptive dissimilarity measure for document clustering
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Pairwise-adaptive dissimilarity measure for document clustering
چکیده انگلیسی

This paper introduces a novel pairwise-adaptive dissimilarity measure for large high dimensional document datasets that improves the unsupervised clustering quality and speed compared to the original cosine dissimilarity measure. This measure dynamically selects a number of important features of the compared pair of document vectors. Two approaches for selecting the number of features in the application of the measure are discussed. The proposed feature selection process makes this dissimilarity measure especially applicable in large, high dimensional document collections. Its performance is validated on several test sets originating from standardized datasets. The dissimilarity measure is compared to the well-known cosine dissimilarity measure using the average F-measures of the hierarchical agglomerative clustering result. This new dissimilarity measure results in an improved clustering result obtained with a lower required computational time.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 180, Issue 12, 15 June 2010, Pages 2341–2358
نویسندگان
, , , , ,