کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
394535 665812 2013 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mining user similarity based on routine activities
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Mining user similarity based on routine activities
چکیده انگلیسی

Mobile user similarity is significant for location-based social network services. With the pervasiveness of location-acquisition technologies, research on measuring mobile user similarity based on their trajectories has attracted a lot of attention. However, trajectories imply only short-term mobile regularities, and thus users’ long-term activity similarity is difficult to be captured. In this paper, we address the problem of mining users’ long-term activity similarity based on their trajectories. To solve this problem, we propose a two-stage approach. At the first stage, the notion of routine activity is proposed to capture users’ long-term activity regularities. The routine activities of a user are extracted from his/her daily trajectories. At the second stage, user similarity is calculated hierarchically based on the extracted routine activities. Finally, we evaluated our approach based on both real and artificial datasets. The experimental results show that users with different profiles can be discriminated on the basis of our similarity metric, and thus demonstrate the effectiveness of our approach.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 236, 1 July 2013, Pages 17–32
نویسندگان
, , ,