کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
394635 | 665821 | 2011 | 22 صفحه PDF | دانلود رایگان |

Dynamic time warping (DTW) is a powerful technique in the time-series similarity search. However, its performance on large-scale data is unsatisfactory because of its high computational cost and the fact that it cannot be indexed directly. The lower bound technique for DTW is an effective solution to this problem. In this paper, we explain the existing lower-bound functions from a unified perspective and show that they are only special cases under our framework. We then propose a group of lower-bound functions for DTW and compare their performances through extensive experiments. The experimental results show that the new methods are better than the existing ones in most cases, and a theoretical explanation of the results is also given. We further implement an index structure based on the new lower-bound function. Experimental results demonstrate a similar conclusion.
Journal: Information Sciences - Volume 181, Issue 19, 1 October 2011, Pages 4175–4196