کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
395210 665936 2008 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Decision field theory extensions for behavior modeling in dynamic environment using Bayesian belief network
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Decision field theory extensions for behavior modeling in dynamic environment using Bayesian belief network
چکیده انگلیسی

Decision field theory (DFT), widely known in the field of mathematical psychology, provides a mathematical model for the evolution of the preferences among options of a human decision-maker. The evolution is based on the subjective evaluation for the options and his/her attention on an attribute (interest). In this paper, we extend DFT to cope with the dynamically changing environment. The proposed extended DFT (EDFT) updates the subjective evaluation for the options and the attention on the attribute, where Bayesian belief network (BBN) is employed to infer these updates under the dynamic environment. Four important theorems are derived regarding the extension, which enhance the usability of EDFT by providing the minimum time steps required to obtain the stabilized results before running the simulation (under certain assumptions). A human-in-the-loop experiment is conducted for the virtual stock market to illustrate and validate the proposed EDFT. The preliminary result is quite promising.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 178, Issue 10, 15 May 2008, Pages 2297–2314
نویسندگان
, , ,