کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
395287 | 665945 | 2010 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A neural network based on the generalized Fischer–Burmeister function for nonlinear complementarity problems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we consider a neural network model for solving the nonlinear complementarity problem (NCP). The neural network is derived from an equivalent unconstrained minimization reformulation of the NCP, which is based on the generalized Fischer–Burmeister function ϕp(a,b)=‖(a,b)‖p-(a+b)ϕp(a,b)=‖(a,b)‖p-(a+b). We establish the existence and the convergence of the trajectory of the neural network, and study its Lyapunov stability, asymptotic stability as well as exponential stability. It was found that a larger p leads to a better convergence rate of the trajectory. Numerical simulations verify the obtained theoretical results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 180, Issue 5, 1 March 2010, Pages 697–711
Journal: Information Sciences - Volume 180, Issue 5, 1 March 2010, Pages 697–711
نویسندگان
Jein-Shan Chen, Chun-Hsu Ko, Shaohua Pan,