کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
395354 665953 2007 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Two methods for privacy preserving data mining with malicious participants
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Two methods for privacy preserving data mining with malicious participants
چکیده انگلیسی

Privacy preserving data mining addresses the need of multiple parties with private inputs to run a data mining algorithm and learn the results over the combined data without revealing any unnecessary information. Most of the existing cryptographic solutions to privacy-preserving data mining assume semi-honest participants. In theory, these solutions can be extended to the malicious model using standard techniques like commitment schemes and zero-knowledge proofs. However, these techniques are often expensive, especially when the data sizes are large. In this paper, we investigate alternative ways to convert solutions in the semi-honest model to the malicious model. We take two classical solutions as examples, one of which can be extended to the malicious model with only slight modifications while another requires a careful redesign of the protocol. In both cases, our solutions for the malicious model are much more efficient than the zero-knowledge proofs based solutions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 177, Issue 23, 1 December 2007, Pages 5468–5483
نویسندگان
, ,