کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
395696 666002 2006 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adaptive feedback linearization control of chaotic systems via recurrent high-order neural networks
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Adaptive feedback linearization control of chaotic systems via recurrent high-order neural networks
چکیده انگلیسی

In the realm of nonlinear control, feedback linearization via differential geometric techniques has been a concept of paramount importance. However, the applicability of this approach is quite limited, in the sense that a detailed knowledge of the system nonlinearities is required. In practice, most physical chaotic systems have inherent unknown nonlinearities, making real-time control of such chaotic systems still a very challenging area of research. In this paper, we propose using the recurrent high-order neural network for both identifying and controlling unknown chaotic systems, in which the feedback linearization technique is used in an adaptive manner. The global uniform boundedness of parameter estimation errors and the asymptotic stability of tracking errors are proved by the Lyapunov stability theory and the LaSalle–Yoshizawa theorem. In a systematic way, this method enables stabilization of chaotic motion to either a steady state or a desired trajectory. The effectiveness of the proposed adaptive control method is illustrated with computer simulations of a complex chaotic system.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 176, Issue 16, 22 August 2006, Pages 2337–2354
نویسندگان
, , , ,