کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
395778 666016 2010 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A dynamic classifier ensemble selection approach for noise data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A dynamic classifier ensemble selection approach for noise data
چکیده انگلیسی

Dynamic classifier ensemble selection (DCES) plays a strategic role in the field of multiple classifier systems. The real data to be classified often include a large amount of noise, so it is important to study the noise-immunity ability of various DCES strategies. This paper introduces a group method of data handling (GMDH) to DCES, and proposes a novel dynamic classifier ensemble selection strategy GDES-AD. It considers both accuracy and diversity in the process of ensemble selection. We experimentally test GDES-AD and six other ensemble strategies over 30 UCI data sets in three cases: the data sets do not include artificial noise, include class noise, and include attribute noise. Statistical analysis results show that GDES-AD has stronger noise-immunity ability than other strategies. In addition, we find out that Random Subspace is more suitable for GDES-AD compared with Bagging. Further, the bias–variance decomposition experiments for the classification errors of various strategies show that the stronger noise-immunity ability of GDES-AD is mainly due to the fact that it can reduce the bias in classification error better.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 180, Issue 18, 15 September 2010, Pages 3402–3421
نویسندگان
, , , ,