کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
395824 | 666024 | 2010 | 13 صفحه PDF | دانلود رایگان |

Image registration consists in finding the transformation that brings one image into the best possible spatial correspondence with another image. In this paper, we present a new framework for image registration based on compression. The basic idea underlying our approach is the conjecture that two images are correctly registered when we can maximally compress one image given the information in the other. The contribution of this paper is twofold. First, we show that image registration can be formulated as a compression problem. Second, we demonstrate the good performance of the similarity metric, introduced by Li et al., in image registration. Two different approaches for the computation of this similarity metric are described: the Kolmogorov version, computed using standard real-world compressors, and the Shannon version, calculated from an estimation of the entropy rate of the images.
Journal: Information Sciences - Volume 180, Issue 7, 1 April 2010, Pages 1121–1133