کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
396218 | 666309 | 2007 | 17 صفحه PDF | دانلود رایگان |

As one of most powerful approaches in automated reasoning, resolution principle has been introduced to non-classical logics, such as many-valued logic. However, most of the existing works are limited to the chain-type truth-value fields. Lattice-valued logic is a kind of important non-classical logic, which can be applied to describe and handle incomparability by the incomparable elements in its truth-value field. In this paper, a filter-based resolution principle for the lattice-valued propositional logic LP(X) based on lattice implication algebra is presented, where filter of the truth-value field being a lattice implication algebra is taken as the criterion for measuring the satisfiability of a lattice-valued logical formula. The notions and properties of lattice implication algebra, filter of lattice implication algebra, and the lattice-valued propositional logic LP(X) are given firstly. The definitions and structures of two kinds of lattice-valued logical formulae, i.e., the simple generalized clauses and complex generalized clauses, are presented then. Finally, the filter-based resolution principle is given and after that the soundness theorem and weak completeness theorems for the presented approach are proved.
Journal: Information Sciences - Volume 177, Issue 4, 15 February 2007, Pages 1046–1062