کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
398769 1438774 2011 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Chaotic ant swarm optimization for fuzzy-based tuning of power system stabilizer
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Chaotic ant swarm optimization for fuzzy-based tuning of power system stabilizer
چکیده انگلیسی

In this paper, chaotic ant swarm optimization (CASO) is utilized to tune the parameters of both single-input and dual-input power system stabilizers (PSSs). This algorithm explores the chaotic and self-organization behavior of ants in the foraging process. A novel concept, like craziness, is introduced in the CASO to achieve improved performance of the algorithm. While comparing CASO with either particle swarm optimization or genetic algorithm, it is revealed that CASO is more effective than the others in finding the optimal transient performance of a PSS and automatic voltage regulator equipped single-machine-infinite-bus system. Conventional PSS (CPSS) and the three dual-input IEEE PSSs (PSS2B, PSS3B, and PSS4B) are optimally tuned to obtain the optimal transient performances. It is revealed that the transient performance of dual-input PSS is better than single-input PSS. It is, further, explored that among dual-input PSSs, PSS3B offers superior transient performance. Takagi Sugeno fuzzy logic (SFL) based approach is adopted for on-line, off-nominal operating conditions. On real time measurements of system operating conditions, SFL adaptively and very fast yields on-line, off-nominal optimal stabilizer variables.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Electrical Power & Energy Systems - Volume 33, Issue 3, March 2011, Pages 657–672
نویسندگان
, , ,