کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
398851 1438746 2014 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Faster evolutionary algorithm based optimal power flow using incremental variables
ترجمه فارسی عنوان
با استفاده از الگوریتم تکاملی سریع تر جریان قدرت بهینه با استفاده از متغیرهای افزایش می یابد
کلمات کلیدی
الگوریتم ژنتیک پیشرفته، الگوریتمهای تکاملی، برنامه ریزی خطی، بهینه سازی چند هدفه، جریان قدرت مطلوب
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• A new Efficient Evolutionary Algorithm (EEA) is proposed to solve Optimal Power Flow (OPF).
• The main drawback of evolutionary based OPF is the excessive execution time.
• EEA uses the concept of incremental power flow model, based on sensitivities.
• EEA uses the concepts from evolutionary and classical optimization algorithms.
• In EEA, number of power flows are reduced substantially, resulting in solution speed up.

This paper proposes an efficient approach for evolutionary algorithm based Optimal Power Flow (OPF). The main drawback of evolutionary based OPF is the excessive execution time due to large number of power flows required in the solution process. The proposed Efficient Evolutionary Algorithm (EEA) uses the concept of incremental power flow model, based on sensitivities. With this, the number of power flows are reduced substantially, resulting in solution speed up. The original advantages of the evolutionary algorithms, like: the ability to handle discontinuities, complex non-linearities in the objective function, discrete variables, and multi-objective optimization, are still available in the proposed approach. The OPF solution is obtained with single objectives (fuel cost, loss, voltage stability index) and multiple objective (fuel cost and voltage stability index). The potential of the proposed approach is tested on IEEE 30, 118 and 300 bus systems, and the results obtained with proposed EEA are compared with other evolutionary algorithms. The proposed approach is generic one and can be used with any evolutionary algorithm based OPF.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Electrical Power & Energy Systems - Volume 54, January 2014, Pages 198–210
نویسندگان
, , ,