کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4012010 1261175 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Electrically assisted delivery of macromolecules into the corneal epithelium
موضوعات مرتبط
علوم زیستی و بیوفناوری ایمنی شناسی و میکروب شناسی ایمونولوژی و میکروب شناسی (عمومی)
پیش نمایش صفحه اول مقاله
Electrically assisted delivery of macromolecules into the corneal epithelium
چکیده انگلیسی

Electrically assisted delivery is noninvasive and has been investigated in a number of ocular drug delivery studies. The objectives of this study were to examine the feasibility of electrically assisted delivery of macromolecules such as small interfering RNA (siRNA) into the corneal epithelium, to optimize the iontophoresis and electroporation methods, and to study the mechanisms of corneal iontophoresis for macromolecules. Anodal and cathodal iontophoresis, electroporation and their combinations were the methods examined with mice in vivo. Cyanine 3 (Cy3)-labeled glyceraldehyde-3-phosphate dehydrogenase (GAPDH) siRNA and fluorescein isothiocyanate (FITC)-labeled dextran of different molecular weights (4–70 kDa) were the macromolecules studied. Microscopy and histology after cryostat sectioning were used to analyze and compare the delivery of the macromolecules to the cornea. Iontophoresis was effective in delivering siRNA and dextran up to 70 kDa into the cornea. The electroporation method studied was less effective than that of iontophoresis. Although both iontophoresis and electroporation alone can deliver the macromolecules into the cornea, these methods alone were not as effective as the combination of iontophoresis and electroporation (iontophoresis followed by electroporation). The significant enhancement of dextran delivery in anodal iontophoresis suggests that electroosmosis can be a significant flux-enhancing mechanism during corneal iontophoresis. These results illustrate the feasibility of electrically assisted delivery of macromolecules such as siRNA into the cornea.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Experimental Eye Research - Volume 89, Issue 6, December 2009, Pages 934–941
نویسندگان
, , , ,